Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations.

نویسندگان

  • Brian M Waters
  • Michael A Grusak
چکیده

Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation in Seed Dormancy Quantitative Trait Loci in Arabidopsis thaliana Originating from One Site

A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time,...

متن کامل

A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations.

The regulation of mineral accumulation in plants is genetically complex, with several genetic loci involved in the control of one mineral and loci affecting the accumulation of different minerals. To investigate the role of growth medium and organ type on the genetics of mineral accumulation, two existing (LerxKond, LerxAn-1) and one new (LerxEri-1) Arabidopsis thaliana Recombinant Inbred Line ...

متن کامل

Hybrid incompatibility in Arabidopsis is determined by a multiple-locus genetic network.

The cross between Arabidopsis thaliana and the closely related species Arabidopsis arenosa results in postzygotic hybrid incompatibility, manifested as seed death. Ecotypes of A. thaliana were tested for their ability to produce live seed when crossed to A. arenosa. The identified genetic variation was used to map quantitative trait loci (QTLs) encoded by the A. thaliana genome that affect the ...

متن کامل

Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis.

Dormancy is a state of metabolic arrest that facilitates the survival of organisms during environmental conditions incompatible with their regular course of life. Many organisms have deep dormant stages to promote an extended life span (increased longevity). In contrast, plants have seed dormancy and seed longevity described as two traits. Seed dormancy is defined as a temporary failure of a vi...

متن کامل

Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population.

In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 179 4  شماره 

صفحات  -

تاریخ انتشار 2008